

Clinical Pharmacology during Pregnancy: Efforts of the MFMU and OPRU to expand understanding

Maged Costantine, MD Associate Professor Dept. OB/GYN UTMB-Galveston No conflicts of interest

Support
 2 U54 HD047891
 1 R01 HD083003

Objectives

Issues associated with medications use in pregnancy Pregnancy special considerations Experience from NICHD MFMU/OPRC networks

Medications Use During Pregnancy

Mitchell A. et al AJOG 2011

Medications use during pregnancy: Maternal Age

Mitchell A. et al AJOG 2011

Exposure to Antihyepertensive Medications in Pregnancy

Andrade S. et al Pharmacoepidem Drug Saf 2008

Antidepressants use during pregnancy

Mitchell A. et al AJOG 2011

Medications use during pregnancy

Mitchell A. et al AJOG 2011

First Trimester

Critical period for organogenesis

Many women unaware of their pregnancy

Teratogenicity, while important, is not the only safety concern

Other Concerns in Pregnancy: Dosing

Lack of data on dosage

Vast majority of efficacy/safety studies done without knowledge of PK/PD

Proportions of PK trials in pregnancy

McComack & Best. Frontiers 2014

Proportions of PK trials in pregnancy

McComack & Best. Frontiers 2014

Exclusion of Pregnant Women: Protocols reviewed by an IRB over 1 year

	Exclude pregnant women	Require Pregnancy Testing	Require Contraception
All Protocols (n=71)	53 (75%)	40 (56%)	42 (59%)
All drug studies (n=52)	48 (92%)	37 (71%)	41 (79%)
IND drug studies (n=38)	35 (92%)	31 (82%)	34 (89%)
Non-IND drug studies (n=14)	13 (93%)	6 (43%)	7 (50%)

Schonfeld T, et.al. IRB 2013

Concerns for medications use in pregnancy

 Lack of data on dosage
 Physicians extrapolate drug dosage regimens from non-pregnant subjects or men

Can lead to under or overdosing
 Efficacy and toxicity might be affected

Pregnancy changes

Pharmacokinetics

"What the body does to the drug"

ADME

- Absorption
- Distribution
- Metabolism
- Elimination

Pharmacodynamics

"What the drug does to the body"

- Clinical relevance
 - Efficacy
 - Safety

Drug disposition during pregnancy: physiologic changes

Absorption:

Delayed gastric emptying and decreases GI motility

EliminationIncreased GFR

Parry et al 1970, Gryboski and Spiro 1976, Pacheco et al. 2013, Hill and Pickinpaugh, 2008

Analysis of Weight Gain During Pregnancy

	Cumulative Increase in Weight (g) Up to:			
Tissues and Fluids	10 weeks	20 weeks	30 weeks	40 weeks (Total)
Fetus	5	300	1500	3400
Placenta	20	170	30	650
Amniotic fluid	30	350	750	800
Uterus	140	320	600	970
Breasts	45	180	360	405
Blood	100	600	1300	1450
Extravascular fluid	0	30	80	1480
Maternal stores (fat)	310	2050	3480	3345
Total	650	4000	8500	12,500

Chapter 8: Williams Obstetrics, 5th edition

Implications

- water --> larger volume of distribution of water soluble drugs
- fat --> larger volume of distribution for lipid soluble drugs
- Maximal serum concentrations
 Less effective
 Higher dose to obtain therapeutic levels

Anger and Piquette-Miller, 2008 Dawes and Chowienczyk, 2001

Changes in Metabolizing Enzymes Activity & Apparent oral clearance

			Effect on CL/F (%) ^a			
						Metabolizing- enzyme activity
Drug/probe		Indication	T_1	T_2	T_3	changes
Caffeine*		CNS stimulant	↓ 33	↓ 48	↓ 65	L CYP1A2
Theophylline		Asthma	\leftrightarrow	\leftrightarrow	↓ 34	↓ 011 m2
Nicotine		Smoking cessation	NA	↑ 54	↑ 54	↑ CYP2A6
Phenytoin*,b		Epilepsy	↑ 43	↑ 51	↑ 61	↑ CYP2C9
Proguanil		Malaria	NA	↓ 60	↓ 60	\downarrow CYP2C19
Metoprolol*		Hypertension	NA	NA	↑ 459	↑ CYP2D6
Dextromethor	han ^b	Cough	↑ 26	↑ 35	<u>↑</u> 48	
Midazolam*		Sedation	NA	NA	↑ 99	
Indinavir		HIV infection	NA	NA	↑ 277	↑ CYP3A4
Glyburide		Diabetes	NA	NA	↑ 106	
Methadone		Addiction	NA	↑ 101	↑ 65	↑ CYP2B6
Labetalol		Hypertension	NA	↑ 3 0	↑ 3 0	↑ UGT1A1
Lamotrigine		Epilepsy	↑ 200	↑ 200	↑ 3 00	↑ UGT1A4
Zidovudine ^c		HIV infection	NA	NA	\leftrightarrow	\leftrightarrow UGT2B7
Amoxicillin		Bacterial infection	NA	↑ 23	↑ 20	
Metformin*		Diabetes	↑ 22	↑ 28	↑ 11	↑ Renal CL
Digoxin*		Cardiac diseases	NA	NA	<u>↑</u> 19	

Ke AB et al. Annu Rev Pharmacol toxicol 2014

Need Drug Research in Pregnancy and Lactation

Preeclampsia

5-7 %

- 1/5 of all maternal death in the US
- 50,000/yr maternal death from eclampsia in the world

Figure 3: Geographical variation in distribution of causes of maternal deaths *Represents HIV/AIDS. †Represents embolism. ‡Represents ectopic pregnancy. §Represents anaemia.

Complications in severe preeclampsia

Maternal

- Eclampsia
- CVA
- Uncontrolled hypertension
- Kidney injury
- Pulmonary edema
- Liver injury
- Death

Fetal/neonatal

- Stillbirth
- Abruption
- Growth restriction
- Premature delivery
- Long term adverse outcomes

Preeclampsia: a Cardiovascular Disease

Overlapping pathophysiology & common risk factors

DM, HTN, Obesity, Dyslipidemia

Common mechanisms

Inflammation

Endothelial dysfunction

American Heart Association - 2011

Brends et al. Hypertension 2008 Hansson et al. NEJM 2005 Redman et al. Science 2005

Prevention

Preeclampsia prevention
Ca, Vit C & E, fish oil
Low dose aspirin

Cardiovascular disease prevention
 HMG-CoA reductase inhibitors (statins)

Barton et al Obstet Gynecol 2008 Askie et al Lancet 2007 Brugts et al BMJ 2009 Mills et al J Am Coll Cardiol 2008

Statins for Preeclampsia Prevention

Murine Preeclampsia Model sFlt-1 expression

High BP

- Altered vascular profile
- Proteinuria
- Glomerular endotheliosisPlacental hypoxia
- IUGR

Kumasawa et al. PNAS 2011 Maynard et al., JCI 2003 Lu et al., Am J Obstet Gynecol 2007

Pravastatin in Animal Models of Preeclampsia

- \downarrow sFlt-1 & \uparrow PlGF
- ↑ eNOS
- Improves vascular reactivity
- ↓ Proteinuria
- \ Oxidative stress
- Restores fetal growth
- No ↑ pup resorptionNo pup deformation

Kumasawa et al. PNAS 2010 Costantine et al., Obs Gyn 2010 Ahmed et al., PLoS ONE 2010 Singh et al, HTN 2011 Fox et al., AJOG 2011 Bauer et al, HTN 2013

Can We Use Statins in Pregnancy?

Class X

Studies in animals or humans have demonstrated fetal abnormalities and/or there is positive evidence of human fetal risk based on adverse reaction data from investigational or marketing experience, and the risks involved in use of the drug in pregnant women clearly outweigh potential benefits

Pravastatin: Pregnancy Experience
Animal data:

Not teratogenic (10-120x human exposure)
No effect on placental and pup weights

Human Cohorts:

No increased rate of congenital anomalies, SAB, IUFD.
No effect on fetal growth

Bateman et al. BMJ 2015, Eddison et al. Am J Med Genet 2004, Taguchi et al. Reprod Toxicol 2008, Ofori et al. Br J Clin Pharm 2007, Winterfeld et al. Br J Ob Gynecol2013, Kumasawa K et al. PNAS 2011, ArmentI & Brent, personal communications

Relative Lipophilicity of Statins

McTaggart, Am J Cardiol 2001

A Randomized Controlled Trial of Pravastatin for the Prevention of Preeclampsia in High Risk Women

Eunice Kennedy Shriver National Institute of Child Health and Human Development **Maternal-Fetal Medicine Units Network**

UAB -Birmingham Houston Brown University Chapel Hill

Case Western stern University of Colorado UNC Ohio State University

UT

Stanford University Northwe Duke Texas University SW - Dallas UTMB-

VOTE9 YES7 NO

Transplacental transfer and distribution of pravastatin

Tatiana N. Nanovskaya, PhD; Svetlana L. Patrikeeva, MS; Jonathan Paul, PhD; Maged M. Costantine, MD; Gary D. V. Hankins, MD; Mahmoud S. Ahmed, PhD

Placental transfer studies: Clearance index

FIGURE 1

Normalized maternal to fetal and fetal to maternal transfer of pravastatin

Nanovskaya et al, Am J Obstet Gynecol 2013

Placental transfer studies

Zarek et al, Placenta 2013

Pravastatin for the Prevention of Preeclampsia in High-Risk Women: A Pilot Study

Obstetric-Fetal Pharmacology Research Units (OPRU) Network The National Institute of Child Health and Human Development

Primary Research Questions

What are the Pharmacoknetic properties and maternal and fetal safety profiles of pravastatin when used as a prophylactic daily treatment in pregnant women at high risk of preeclampsia?

NCT01717586

NICHD-OPRU

OBSTETRICS

Safety and pharmacokinetics of pravastatin used for the prevention of preeclampsia in high-risk pregnant women: a pilot randomized controlled trial

Maged M. Costantine, MD; Kirsten Cleary, MD; Mary F. Hebert, PharmD, FCCP; Mahmoud S. Ahmed, PhD; Linda M. Brown, DrPH; Zhaoxia Ren, MD, PhD; Thomas R. Easterling, MD; David M. Haas, MD, MS; Laura S. Haneline, MD; Steve N. Caritis, MD; Raman Venkataramanan, PhD; Holly West, DHEd; Mary D'Alton, MD; Gary Hankins, MD; for the *Eunice Kennedy Shriver* National Institute of Child Health and Human Development Obstetric-Fetal Pharmacology Research Units Network

NCT01717586

Estimated steady-state pravastatin pharmacokinetics in subjects during the second and third trimesters of pregnancy compared with postpartum

Parameter	18–24 wks gestation $(n = 11)$	30-34 wks gestation (n = 10)	4–6 mo postpartum (n = 9)
C _{max} , ng/mL	14.9 ± 11.3	11.1 ± 6.2	17.2 ± 11.5
T _{max} , h	1.6 ± 0.6	$\textbf{1.5} \pm \textbf{0.4}$	$\textbf{1.6} \pm \textbf{1.0}$
Half-life _{apparent} , h	$\textbf{2.1} \pm \textbf{0.9}$	$\textbf{3.0} \pm \textbf{1.6}$	$\textbf{2.4} \pm \textbf{1.3}$
CL/F, L/h	396 ± 190	$\textbf{389} \pm \textbf{215}$	289 ± 142
CL/F, L/h/kg	$\textbf{4.6} \pm \textbf{2.4}$	$\textbf{4.2} \pm \textbf{2.0}$	$\textbf{3.2} \pm \textbf{1.5}$
AUC ₍₀₋₂₄₎ , ng/h/mL	31 ± 16	32 ± 16	$\textbf{43} \pm \textbf{20}$
Amount excreted _(0-24 h) , mg	$\textbf{0.98} \pm \textbf{0.60}$	$\textbf{1.04} \pm \textbf{0.57}$	$\textbf{0.93} \pm \textbf{0.60}$
Percent excreted unchanged	10 ± 6	10 ± 6	9±6
CL _{renal} , L/h	34 ± 16^{a}	34 ± 11^{a}	23 ± 4
CL _{secretion} , mL/min	$480\pm\!273^a$	471 ± 151^{a}	$\textbf{325} \pm \textbf{65}$

A Randomized Controlled Trial of Pravastatin for the Prevention of Preeclampsia in High Risk Women

VOTE15 YES1 NO

Pre-clinical work

OPRU – Other Studies

- Glyburide and 17 OHP biotransormation
- Diclectin
- Opportunistic study
- Oseltamivir
- Glyburide and Metformin for GDM
- PD impact of vaginal and IM progestin on cervix

NICHD-OPRC Current Sites

University of Texas Medical Branch, Galveston, TX
Pravastatin to prevent preeclampsia
Northwestern University, Chicago, IL
SSRI
University of Pittsburg, Pittsburg, PA
Bupronorphine

DM-Stat, Boston, MA

Challenges in conducting medications trials in pregnancy

- Patient enrollment
- Unlikely to consent when healthy
- Physiologic adaptations of pregnancy
- Perceived risk to pregnant women and fetuses/infants
- Pharmaceutical companies interest

Cohen-Wolkowiez M. obstet gynecol 2014

Possible Solutions

- Sampling strategies PK/PD modeling and simulation Increasing the support of PK trials in pregnancy Private/government-funded organizations Support existing networks charged to perform obstetric-fetal pharmacology studies Incentivize pharmaceutical companies Obstetric pharmacology training programs
- Legislation

Cohen-Wolkowiez M. 2014

UTMB

Gary Hankins, MD Mahmoud Ahmed, PhD George Saade, MD Tatiana Nanovskaya, PhD Shannon Clark, MD Wayne Snodgrass, MD, PhD Sherif Abdel-Rahman, PhD Erik Rytting, PhD Perinatal Research Division Holly West, ANP Ashley Salazar, RN

Eunice Kennedy Shriver - **NICHD** 2 U54 HD047891 1 R01 HD083003

utmb Health

Eunice Kennedy Shriver – NICHD

Anne Zajicek, MD, PharmD, FAAP Zhaoxia Ren, MD, PhD

DM STAT Kim Dukes, PhD Julie Peterson

University of Pittsburg

Steve Caritis, MD Raman Venkataramanan, PhD

Northwestern University

Katherine Wisner, MD Catherine Stika, MD Al George, MD William Grobman, MD

utmb Health

Indiana University

David Flockhart, MD, PhD David Hass, MD, MS Laura Haneline, MD Sara Quinney, PharmD, PhD

University Of Washington

Thomas Easterling, MD Mary Hebert, PhD

Columbia University

Kirsten Cleary, MD Mary D' Alton, MD

RTI

Linda Brown, PhD Katrina Burson, RN

Eunice Kennedy Shriver – NICHD U10HD047891, U10HD063094, U10HD047892, U10HD047905, and U10HD057753

utmb Health

Thank You

Fig. 3. Simplified view of the pharmacokinetics of pravastatin in humans.

Modified from Hatanaka T. Clin Pharmacokinet 2000

T Easterling, MD

Fig. 3. Simplified view of the pharmacokinetics of pravastatin in humans. Hatanaka T. Clin Pharmacokinet 2000

MW 446 β-hydroxy acid Hydrophilic Protein binding (43-54%) High extraction ratio Hepatoselective Organic anion transporter Biliary secretion (23% fecal) Renal tubular secretion (47%) portal flow (↓10% AUC - ß blocker)
 CYP metabolism, minor - oxidized metabolites 1000-fold < other statins
 P-glycoprotein CNS - substrate (undetectable in brain)
 Grapefruit juice - no interaction
 Cyclosporin heart transplant 20-fold increase in AUC renal transplant - several-fold higher

Project Development Timeline - Pravastatin

NCT01717586